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We consider a differential game [l-5] with termination on a set MLz, = (41 5% I< 
Q p], in which the payoff is the time of hitting onto Af. The velocity z.~ of the 

change in the coordinate z1 obeys the equation 

The first (minimizing) player’s control 11 is subject to the impulse constraint 

and does not enter into the equations describing the variations of the variables 

2x7 .*.1 x,-r* The second (maximizing) player’s control v is an ( II- Z )-vector 

and the second player chooses it from a certain set 0. A number of theorems 
have been formulated, permitting us to find the controls and the time of the 
mfnimax problem or to form the second player’s control enabling him to evade 

falling onto set M under any action by the first player. We consider three exam- 

ples. 

1. Let the equations of motion have the form 

X1 * = 32 = qJ1 (w), . = ‘P2 (w, c) + ZL 

p* = - / U 1) CLH ’ 0, u E Q (IL’) 

w = LQ, . . . . Xl,_i, pl, 2, = Ic2, . . . , t.,,_J 

The first player’s control u is subject to the constraint 

po _ ( j u 1 dt == CL (4 > 0 
0 

(1-l) 

(1.2) 

while the second player’s control v belongs to a certain closed bounded convex set 

Q (w) defined for all values of LuConstraint (1.2) admits of impulse jumps in the vari- 
ables z2,p in accord with the formulas 

s.?’ (r) = Js (z) = 2: (r - 0) i- bll. p”’ (T) = p (z) - 1’ (z - 0) --11-‘11 

(1.3) 

The vector 

w (z) = Iti (t), x.2 (r - O), *. *, &,-I (r), CL (r - ‘J) 1 

is called the position of the game at the instant 1 = r.If in position w (t) the first pla- 

yer realizes jumps (1.3). then the vector 
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w(l) t@ = 1x1 (T), x:‘(z) = J* (t), . ..) X,-l (z); p(l) (z) = p, @)I 

is not a position, 
Suppose that fort > Z the players realize the finite controls IL (w, v), u (W), then 

the subsequent motion by virtue of system (1.1) takes place just as it would take place 
if the vector ~(1) (z) were the position at time 2 = z. In what follows rhe words “motion 

issues from the position W(~)(Z) ” should be understood in precisely this sense. The pair 

of controls u (w, v), v (~)and the trajectory W [t > O! {u (zc, v), 2' (W)}, W (t = 

= 0)) realized by them are said to be admissible if the equality 

w (07 {u (w, $7 v (WI}, w (t = 0)) = w(l) (0) = w(l) (t = 0) 

is fulfilled for t = 0 and, furthermore, for all t \ r) the trajectory is right-continu- 

ous in t has a finite number of jumps compatible with (1.3), satisfies (1.2). and satis- 

fies system (1.1) for almost all t > 0. 
The problems formulated below are solved by admissible controls and trajectories. 

In order that the initial value W (0) be formally a position. we ascribe to it a previous 

history w (t < U) (E < I < 0) which is continuous at t = 0 . The first player can 

instantly bring about the transition from the set M [zl - 0; 1 s, 1 < p I to the set 
K ix, = x2 = UJ by a “soft” contact with respect to the coordinate x1 and the velo- 

ciry x2 . As a consequence of this we can considerM as the set of game termination, 

We formulate the fundamental problems: 
Problem 1. Find controls u” (w, v), v” (w) such that the time 2‘ [ I(, d at which 

trajectory w (t, {u, v}, w (0))first hits on M would satisfy the bounds 

T [id’, u] < T [IL’, if’] < T [u, v”] - 

The collection of positions admitting of a solution of Problem 1 is denoted W, (w). 
Problem 2. (Evasion). Find v0 (w) such that the trajectory w (1. {u, q, (w)}, 

w (0)) does not hit onto Mfor any u and t >. 0 . The existence conditions for I;,, (u:) 

delineate a set w0 (W). 

Problem 3. (Capture). Finduo) (w, c)leading the trajectory w (t, {z(,~), v}, 
W (0)) onto set M in finite time for any 2‘ (u.). The existence conditions for u,s) (UT. Z) 

generate a set WCs, (w). 

Problem 4. (Local variant of Problem 1). Find u(,) (II?, v), zj(,) (w) and a set 
J’v,/,j (w) such that the bound 

2’ 11~~~). VI & T h(h), q4,1 il._;) 

is fulfilled for any w (0) E WC ,) (w) and any u and such that the bound 

T [q~), +,)I < T Iu, q,,l 0.5) 
is fulfilled for any pair ZL, V,,J retaining the trajectory in the region Jt;4~(~i. 

2. We restrict ourselves to examining only those systems for which the inclusion 

M, Lq = 0; I 52 I > pl G TV, (w) (2.i) 

is valid and the whole examination is carried out in the region 

U(l’ (10) = D(“) [2, = 0, 2s < (11 u ICY) Ix, > 01 (2.2) 
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in which any position can be located by a change in axes direction. 

Theorem 2.1. For w E D(l)(W)let there exist a controlfi)(W)and a function 
F(l) (w) possessing the following properties: 

2.1.1. The function P@)(W) = xs when w E D(o). 

2.1.2. The sum Cc -k 8’(l) (W) does not grow along any trajectory w (t, {u, ~(1) (W)), 
W (U)), W (0) E U(l) - The inclusions 

V(l) (zc) E ua (20). D(s) (w) = D(l) 3 [r-l + F(l)(W) < 01 E w, (w) (2.3) 

are valid under conditions 2.1.1.. 2.1.2.. i.e., the control V(l) (W) solves Problem 2 
in the region D(Z)(~). 

Proof. Letu,(O)ED (2J. The trajectory f~(t, {u, ~(~)(m)),lu(O)) cannot hit onto _\I ear- 
lier than the instant G at which the inclusion LU(Z,. {u, v~“(Iu)}: w (0)) E Dt") is first 

realized, because *I can decrease only when zs < O.However. from 2.1.1. and 2.1.2 
there follows the inclusion ~(t,, {u, v ~1 (@I, W(U) ) E M,.A subsequent hitting ontoM is 
impossible in accordance with condition (2.1). 

Under certain conditions the solution of the following problem can serve as the basis 

for the construction of the functions ~(1’ (w) and F(1) (w) . 

Problem 5. Find ?Q (w) minimizing the value of the functional 

v (w (t, (0, v (w) }, W (0))) = x2 (r3 [when x1 (Q = 01 

equal to the value of zs when the equality z1 = 0 is first r,ealieed on the trajectories 

of system (1.1) obtained for u (w, v) = 0. 
The collection of values of W for which Problem 5 has a solution forms a set D(s) (W)E 

E D(1) (w). Suppose that we have succeeded in continuing the functions HCS, = 

= T/( (t.~~~‘)),v~~) into regionDo and in obtaining a continuously-differentiable function 

F#(w) and a certain function v:“(w) satisfying the realtions: 

71-l 

Let us explain the relations written out. The left-hand side of (2.4) is the first deriva- 

tive of the function I’::{(W) by virtue of system (1.1). The function P:“combines the 

terms not depending on control u,while Pi” combines the terms which do de 
r 

nd on 

control U. In the formulas we have adopted the notation Pi” = f#“l~ - F’($ “I 1 U 1, 
It is not difficult to verify the relation 

which is a consequence of bounds (2.6). (2. ‘7). The function $:,‘(w> satisfies condition 

2.1.1. by construction, while the fulfillment of condition 2.1.2 follows from (2.8). 
Thus we can assert the following: if the functions p$(w) and V$ (w) satisfy conditions 
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(2.6) and (2.7), then, by setting F(l) -_ F,‘:], $1) = v$, we obtain functions consistent 
with the hypotheses of Theorem 2.1. 

3, Let us assume that in all the subsequent considerations the functions cpi (ID+ V) 

(i = 1, . . . . n - 1) and the set Q (u) do not depend upon p. In this case the functions 

H(3)== V T{ %, I)( u I ( ) and the region .DIs) will depend only on the vector 

s = fxs, xi, zs, . . . . 2&i? = Izs, 21, 2 = 1x1, 5$, .*., G-1 I (3.1) 

Suppose that we have succeeded in continuing the functions H(s) and O(s) into region 

D3) (4 3 D(3) (a) * in the form of functionsH@)and ~(8) , 

zJ@) @I = qst (St, s E &) 61 (3.2) 

P (4 = fb, (sh s E Q5) (4 (3.3) 

Let us assume also that from the inclusions 

s E P (s), vsQ (~~~(‘~(~)) (3.4) 

there follow the relations 
Pi”“’ (a Y(3)($)) = 0 < Jy)(st v(s)) t 

while from the inclusion a e D@) fl C(l) there follows the bound 

1 P[*’ (s) 1 < 1 

(3*5) 

(3.6) 

Here the expression #’ (8, v) equals the derivative of the function H(“)(s) by virtue of 
system (1.1) with 7.~ (W, v) = 0. 

We introduce into consideration a region D(4)(w) defined in the following manner: 
for any w E D(‘) (w)there exists an admissible control U= pI (w) 6 < 0 such that 
the vector 

w(i) = [ts + pt, %, lk - 1 !.Lll] = f@, 2, p(f)] 

satisfies the inclusion 

(3.7) 

u;(t) E P (s) n [,u + fil@I > O] (3,Xj 

In region DC41 (w) we introduce the impulse control 

U@) (W) = p:“’ (U?) s (3.9) 

where ~~~I’(~) is the smallest root of the equation 

I_1 - / PI j + P (Xc + pi, 2) = 0 (3.10) 

According to conditions (3.6) and (3.8) the smallest root of Eq, (3.9) is unique and non- 
positive. The relations 

kl + P) (s) = G, s ts P (s) (3.12) 

follow from the condition n:“(U’) = 0. Under conditions (3. II) the control u(~)(zo, P) 

is chosen as the smallest root of the equation 

(I’ + II’:” (,sl,’ = - / II \ + H@)‘% + p (s, P) = 0 (3.12) 

This root has the form 

?A $’ (K, 2’) = i%(J) (a, u) = - P;“’ (s, V) (1 + R~3)9-L (Xl 3) 



We present heuristic arguments which suggest how to form the control u in accurda- 
nce with (3.9) and f3,13). Intuitton suggmts that &e first player should realize with a 
jump a negistive vatue, maximat in modulus, of the ve%oo:it)7 3:s = “s + I”+tfi the 
aim of getting Into region D@) rapidly. 
ate the inequality cl(l) + H@) 

However, it is risky for the first player to viol- 
(2% ‘l’, 2) >O by virtue of arguments analogous to those used 

in the proof of Theorem 2, X, On the other hand, by applying control 11~” the first player 
is guaranteed Tom hitting onto set ML at lesrrt as fang as the motirm remains in regiun 

~~~~~~~*~~~ed~ after the Impu&re Ilf4flfG” u1”)6 the subsequent motion origirlates tiom the 
position 

& = jz&+4) = 
2 a+ &hi41 (w), 2, p =Er-lI~4'iJ (3.14) 

and takes place in accordance with the equations 
51’ = p = ;,, P * = %CP I z, PI + uCG1 @Y & ZJj (3.15) 

zi = gi fp* 37 vf (I = 3, .**, la - f) 

We note that as long as the componerirr; of the vector 8’ = IP, 21 remain in the region 

DC39)($q =s: p(a$ = p, g), the equality p + B%‘) = 0 is preserved altJng the -traject- 

ories of system (3.15). This signifies that from the inclusions 

A* (0 < f < Ql @f§>]* St”@) = pfD), z (0)) E f5fSi [s’) 

OfI(T t’s)>* B(O)* :: fat) f M2 Ix, = O] 

Thus, au)r control v Is’) which retains a trajectury of system (3.15) in region D@)@‘) and 
brings it at the instant t, onto the “pbe”’ zt = 0, leads the position w onto the set M 

at this instant f,. 

After making the substitutionp M) = x2 -f- pt. and taking the condition p1 < Ointo 

account, Eq. (&IO) can be written in the equivalent form 

p - & + p a_ B@f (p, z) = 0 (X%6) 

Its sulutian 
p(4) i PI*) (jh - x2, z) 

(3.17) 

jointly with the identity transformation z1 = z maps the region Q(~)(W) onto the region 
Do@ and furnishes the irMaI conditions in system [3,15). In what follows we denote 

&is mapping by 7) @)* 

4. Suppose that the first player realizes the control undo; then the second player is 
faced with mo problems: 

Problem 6, Find v@)($‘) such that the trajectory of system (3,lS) @it&x remains 

in tb ~~g~u~~~~~s’~~ but nwer leaves the planez, = 0, cx haves the region D(3l@’ 1. 

The exls~hce conditiormr fur yC@ (3’) de&r4rMe a region D@+‘] E f)f+‘), 

Problem 7, Ffnd E1(7f (s’ ) bzb@q~ the trajectory af system @,I5) onto the piane 

31 = 0 fn maximal time, The existence conditions for #J(s’) deIiineate d region 
0(7)(S') E P)(d). 

NatutaUy,’ the second p&yer will solve Problem ? otiy in case it is impossibh for 
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him to solve Problem 6. Hence follows the inclusion Uc7k(s’) E IWt(s’) \ D@)(s’). 

In the example presented in Sect. 6 the solution of Problem 6 helps to solve the problem 
of the complete construction of the set Ws and of the eor~ttol ~+(rrt). 

Theorem 4.1. Suppose that the exact equality 

W)(s’) c D(:Jj(S’) \ D@j(S’) 

holds and that the region D(r)(s’) is closed by the boundary G (71 (s’) 3 Ms Also suppose 
that everywhere in region ~(i)(s’~ there exist a function $+ (s’) and a con~uo~ func- 
tion T(i) (0 satisfying the following requirements: 

4.1.1. The function ?‘(,,(s’) is continuously differentiable in the region DO($) \ 
\ G(T) (s’) and satisfies the relation 

T(r) (S’, U(*), Vbj (S’)) = TtfjP + T$ (a(“) (S’, u;,j (s’)) + ‘pg (s’, o;,j is’))) + 

4.1.2. Condftions analogous to conditions (4.1) are fulfilled on the part of the bound- 
ary G(r) \ Ma,which is a smooth surface. under a partial differentiation along the fnd- 
icated part of ate boundaty, 

t’ 
4.1.3. The function Trtt (a’) > 0 when s’ EI)t7j\Mo and T;:, (s’) = 0 when 
c Ms. 

4.1.4. No control I’ (s’) whatsoever can carry the trajectory outside of D(‘) (s’) if 
s’ (0) E D(i) (s’). 

Under conditions 4.1. I .- 4.1.4 the regionD(rJ (s’)is the total region of existence of 
the solution of Problem 7 and the equalities 

are valid. 

UC) (8’1 = Y(T) (s’), T<;, (s’f = T [u(T) (s’)] (4.2) 

The proof of Theorem 4.1 is not complicated and can be omitted. By fits, (W) and 
De,; (10) we denote the prefmages of regions I)(@@‘) and DC?1 (s’)~ corresponding to the 
mapping Q (20). In region DQ’f fwj the function rf7) (s’) goes over into the function 

~~~~~~~~~~ clfisolves Problem 1, 3, 4. 
;m, z) 2). We proceed to formulate the conditions under which the pair 

Theorem 4.2. Let the following conditions be fulfilled: 
4.2.1. In region D,!:) (u:) there exists a certain admissible control r+q (ui’)? becoming 

L‘t:) (S’) for Q I yW(p - s2, @and maximizing the quantity k’(a>,i rnich is defined 
below, 

4.2.2. The bound 

I+,)., (X” = ;A”), ;, A) Is’)) fig P(!,l 1 (z, > &I:(.), 5, V(.,) (to)) (4.31 

is valid for the sum Pc),t (UT, t:) which is the derivative of function Ttpt by virtue of 
system (1.1) with I( (w, V) ‘= U 

4.2.3. The bound 

is valid. 
4.2.4. In the region .L&,) (w) = D(1) \ (t;i,:,) u O(s)) there exists a control v(lO) (w) 
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such that under any 

~1 E %, \ M of 
control u # uW,taking the position outside region Dts) at the point 
the boundary Gte, the Rectory W (t > T(&Q, {u, qlo) (w)}, WJ 

either does not return to the region U@ at all or returns to the point ws E +,) \ w 

with the bound Ttu) (Wt) > T(V) (WI) being observed. 

4.2.5. In region D(l) there exist functions F(l), dl) satisfying the hypotheses of 
Theorem 2.1. and moreover, I!(o) = F(l) when s E D(s) (J’). 

The inclusions 
U(d) E UO, u(7) E v”, D(B) E W” (4.5) 

are vaud under conditions 4.2.10 4.2.5, i.e., u(d), II(‘) solve Problem 1. Furthermore, 
the equality 

T(9) (p - q* 2) = T W, ~“1 (4.6) 

is valid. The equalities 
24(a) = U(J) , u(7) = U(d), 40 = bf$*, 

Tw) (P - +a z) = 2’ Iu(.i), v(,)J 
(4.7) 

are valid under conditions 4.2.1, 4.2.2, 4.2.3. 4.2.5. i.e., IL(*), d7) solve Problem 

4 in the region Dt8). Furthermore, it is obvious that the control uJ*~ = ug) solves Prob- 

lem 3 in the region D+ W(a) independently of conditions 4.2.1- 4.2.5. 
P I o o f. The derivative of the function Ty) by virtue of system (1.1) has the form 

(T(9) (P - 22, 2))’ = P(,j, + q;/ (u + I u I) 

Bound (4.3) shows that for u = U(~)(S)) this derivative achieves a minimum for u = U(J), 
over all controls 11 preserving the inclusionwclJ E Dtr) (u).The realization u < u@’ takes 

the position into region iHs) according to condition 4.2.5. The realization :L # u(4), 

taking the position outside DC@ has no advantage, according to condition 4.2.4. When 

u = ut4’ the second player should select v = ‘1;) (s’) in accordance with the solution of 

Problem 7, The proof of the correspondence with Problem 1 is complete. If we discard 

condition 4.2.4, then the proof of the correspondence with the solution of Problem 4 

for all IL which palred with control L’(~) (w) retains the trajectory in region I)(,), is a ver- 

batim repetition of the arguments presented above. 
Theorem 4. 3. If the set 0 (8) and the functions cri (s, or) (i = 2, . . . n - 1) 

are such that in the region 

L (w, Ci) = DC\,) (w)i J [c?’ -i- . . . + c:-, d 0’1 

we can find a continuous and bounded function iV (lc, ci) - 0 as ~2 -+ 0 uniformly 

inw E Dc,,j(w)and satisfying the bound 

[ A@) (max,(c,cp, + . . . + c,,.-~v ,,.. J I < \ O:*, c,) I A4 (‘1.9) 

(where AL2J 9 (S, Ci)denotes a partial increment of the function 9 with respect to the 
variable 5)~ then there exists a positive function e (Q< 0) > 0 and a region Dk < 
< 0, 0 & 51 < 8 (Z+)l in which bounds (4.3) and (4.4) are valid. 

Proof. We write out in detail the quantity PC,), 
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in accord with the formulas 

T[# = T[;,l + T[b&,(.‘)[‘l, 

T# 5: Tf$ + 7$$b)f’~ 

T[# = T[,qlp(“)t~l 
, (4.11) 

(i = 3, . . ., II - i) 

which ate a consequence of bound (3.6) guaranteeing the diffe~ntiabi~~ of the funct- 
ion p(‘) (to) and the bound P@ fs) > 0,as well as with the relations 

Tf$=u (i=2,..., n-t), s’E[Q=sO: P<OI (4.12) 

Tt# (a22 > 0) > 0, r’E[=l=0; P<Ol 
(4.13) 

T[,31> 0, 8’ E [O < nl< e (xrf; P < 01 (4.141 

We obtaln the following conclusions. The bound (4.14) in combination with the 
bound p(‘)lsl > 0 guarantees the fulfillment of bound (4.4). Since the function P “)(P - 

- 20.4 depends only on p- %. after carrying out partial differentiations of this function 
the quantity u-%can be repIaced byp(41(u -z+, z)from Eq, (3.16). and as a consequence 
the quantities FQ can be taken as dependent on P(@, t.Thus, a change in t2, preserving 
the quantities P _ +and ptU, affects only the functions w, ,... ~,~.The relation 

P@), (p(-‘1 = 22, 3, “(iI (0) aC mar, P(,I, (52 > p(@, L. 1; (20)) (4.13) 

is valid according to bound (4.9) and to the smallness of the derivatives T#, . . . . 

, , . , qfll because in formula (4.10) the fundamental role is played by the first term. 
Bound (4.15) implies bound (4.3) as a corollary. 

Before proceeding to a consideration of examples, we make several remarks. 
1. The inclusion M1 e W, (w)and the bound (3.6) are fundamental constraints for 

the constructions proposed. The inclusion D(s) 3 D(s) is not essential because it is 
not used in the proof. 

2. As we shall see from the example in Sect. 7, the region D(7) (a’) = DC+)@‘) \ 

\D@(s’) is not always successfully constructed completely. However, t&e arguments 

in Theorem 4.1 nowhere make use of the above-mentioned exact equality and are app- 
licable in any part of region Dts) (uJ), 

3. In the examples presented below it is impossible to hit onto Af from the set M, 
when zsO (tu) =O.For the first example this follows from an analysis of the problem. 
while for the second and third examples, this was proven in [43. 

6. Example. With a suitable choice of scales a controlled heavy pendulum with 
an ideal suspension obeys the equations 

J’i = zs. z2’ = - AlIz, j- u+ 1’ (.i.l) 

i” = - Id* I’ E (r (UT) z 0 

In the absence of control I’ Problem 1 becomes a time optimal&y problem. When fc = 
= 0 system (5.1) admits of a first integral 
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corresponding to Problem 5 in the region I)(,) 

91 1 
0 ----- ------I-. 

K 

C(ZJr, - Q) located above the separatrix ( I, I{. C) - 
(1 - COs 21 + qa = Il! in the strip determined 
by the bounds (Fig.1) 

S&@J Xf IO 4 21 < 221; 22 < 91 u 10 < 5r < L!n: 

92 2, > I‘)1 ( .i .3) 

PO, +m 
% 

Let us continue H(5) by Formula (5.X) onto 
the curve(A, B, C)and adopt the followingme- 

Fig. 1. thod of mapping the motion. We locate the 
initial position in the region Dcii)’ = D(s)U[[A, 13, C)l. We reflect the point 
g, (q, q) E [A, B, C) with u (gl) < 0 into the point 9.~ (2~ - zl,- zs) symmetrically 
with respect to point tl , and we assume rd(8s) = - &). The trajectory is discontinuous 
under such a uansformatlon, but the function ff, varies continuously. The region WO’ 
from which it is imp*rfbie to hit onto M is defined by the reWion 

W.‘(w) = [z+&Jw+fq~ <WU((~* B, c); P + H@)(r) =Ol (5.4) 

I E (A, B. C) 

lndaed, condition~2.1.1 and2.1.2a~fuIfilkdintbeq$on D@==DtH 17 (p-i- 
+ I.$‘) < 01 for drc fmlction F(l) = a@, and Theotern 2.1 is applicable. in the region 

[(A? B, c); p + H(s) (g E (A, B, C) 1 =Ol 

the motion does not arrive into region D to) when II = 0 while when ZA # 0 the motion 

passes into region D -1 (w).Thus, the motion cannot be led onto I?¶ from the region 

WO’(w) defined by relation (5.4). The method adopted for representing the motion 
allows us to identify regions ~(2) and DC,, and functions I@) and JY!,) because, obvio- 

usly, conditions (3.5) and (3.6) are fulfilled. The time Z’C’)(zr, z.,) of the point’s pass- 
ing into region @J when u = 0 has been determined in the region Dc3) 5 Dg,n 

Uhder the adopted representation of the motion the function P(.‘)(lc - A,,-) is defined 

two-valuedly in the region ~(4) = _@n [IL f ff”!’ > ul 

,#‘:’ = ‘/‘?(l - cos El) / (/I - Z) - ‘/; (p - “?) (5.5) 

p!J) : = ‘/< (1 - eels 11) / (p’ + 12’) - ‘/e (CL’ + .XL’) (5.6) 
Here 

!I’= !.” - I 1’2 I7 I*’ = 21 + p** !I$ > u (5.7) 
p>ps=* jGqiGl-2a>o (5.3) 

In the last formula the plus sign is taken when zr > 7 and the minus, when z~ < 3. The 

function Ps ‘*’ (w) is defined in the region delineated by the bound (5.8) and the condit- 

ion Lc’ > VFThe introduction of the function ps (*) has the following geometric meaning. 

If for w E @there exists an impulseu = P, 8 > 0 taking the point away from the curve 

(A,B,C), then it can be repndsented as a sum of two impulses: the impulse VP* > 0 lead- 

ing onto the curve (A,B,C!into the point Br (xl’ q,and the impulse II& < 0 transferring 

the point gS (2~ - z~, _&) into the point (~1~ = 2n - rI; x2” = Pi*’ (WI I_ _ 
The control 

UP’ I (pf’ - zy) 6 = @I (5.91 



On a problem on the impulse contact of mot:one 761 

14::” = PA (g - Sl) a + ps (gij a (5.10) 

is chosen in accordance with formula (5.9) when the bound 

T(R) (21, *Y’) g T(“) ((2lt - Xl), pf’) (5.11) 

is realized and with formula (5.10) when the opposite bound is realized. This means 
that for each position 1c E I$‘@, compatible with bounds (5.8) and condition p’ > T/% 
there exist two functions 

7’(J) (2,) pf'(p - ST* zl)), 
I- -1 Tp(- J-1+ 2X. py(p --2, r1)) 

into which the function T(s)(q.zs) transfers after #)z is substituted for z,. The bounds 

qz1 = ~~~~I~l~~~r21> 0, 77(3X11+ ~(~)~~lp~~tll > t] (Z.lZj 
I 

are valid for both functions IS), If the control ~1”’ is chosen in accordance with (5.9), 
then bounds (5.12) guarantee the fulfillment of conditions (4.3) and (4.4). and the con- 
trol u$) turns out to be optimal in comparison with all controls not leading onto the 
boundary (A, 13, c). On the other hand, the estimate ( TL*)1’ > - 1, is fulfilled when u = 
= u:“’ and therefore bound (6.11) is preserved along the trajectory un tll bound (5.8) or 

the bound pi_’ > v? is violated and the function TF) ceases to exist. The proof ?f the 
optimality of u? when it is chosen in accordance with (5.10) is analogous. Thus, the 
choice of (5.9) or (5.10) with respect to bound (5.11) or to the bound contrary to it rea- 
lizes. in sysdm (5.1). a time-optimal hitting onto set M in the region D”‘(W) I 

6. Example. Supposcthatsystem(l,l)hastfteform 

ZI*=ZZ, ZZ*GZU+O, p*=-lui, p>O, ;z~I<1=Qft~) 

The controls 
v(l)(s)= - 1, sEU’~xl>0; r:!,<O] 

V(l) {t) = 0, rED”[zl>0; %>Ul 

and the function 
F’($5 - v-S=S 

satisfy (2.2) and (2.3). This means that Theorem 2.1 is fulfilled in the region 

D(s) = D(l) n & + f(l) < 01 

and the control Z@(S) effects an escape, 

(ii 1) 

(G.2) 

(M) 

(6.4) 

proving that fhe renion ~(‘ffi [!L + FtXf > 01 coincides with the region DC* (20). since 
(p(Q) zl) ED@) (b’) 

The control 
U(‘l DC (jY(‘l - 28) a for P’“’ -ai<0 (6.7) 
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J4)(I’, v)=p(v+I)/o/pr- p) for p@)=p=za (6.6) 

leads to a system (3.15) of the form 

z1* = p, P l = IN (d, ZI) + v (6.9) 

Setting V@(W) -j-i W~~II ICED(~), in the region D(*) we obtain the control ZJ(~) = + i , 
while system (6.9) goes over into the system 

cp1 l ,z(*/*)-i=2~--i, gi=-- (6.10) 

*,a= Vti+bafP (6.U) 

admitting in D@)(I)) of first integrals of the form 

9s + t = Ctr &(I - 3@)“~ = cz (6.12) 

After substitution from Eq, (6.5) the function R@) = 4+(38 - 1) becomes the function 
Rt4) (u)), and the condition iV4’(w) > 0 delineates the region D(s) (w) = D”’ n IR(4) > 

> 01. Let us compute 

R@)Il’ = (30 - if’* vm > 0; w E DC,) (6.13) 

The equation (R(8))’ = @‘)[‘I p + R(~)IPI~ = o permits us to obtain, from bound (6.13) 
and the bound 2s 2 P the bound 

(R(Q) j= (R (s)Itl + &3)[~1~(4)[‘1) h + ~(3)[~1~(4)131 !I u 1 j u + 11 > o, w E DC,) (6.14) 

which Is valid for any u preserving the trajectory in region D(O). It ensues from bound 
(6.13). from the equality’#)IPI p = - p(++)~(z)I’l > 0 for pt4) < 0, and from the bound 

p(4)L*J > 0. From (6.14) it follows that whenw (0) ED(,) either the inclusion w (t, (u, ~(~1 is; 

= i-i), w(O)) C D 
proves the inclusiof 

~3 M. is preserved or the trajectory falls into region D(s) (w). This 

,L*J = + 1 = L’oo E L’& D(s) (w) E % (~1 

For w E D(,) (u.), s’ E D\;‘(d) = D w n II?@) > 01 , Eqs. (6.12) generate the time 

TQ (s’) 
T(,) (S’) = &(I - (1 - 38)“‘) 

The function I’(,)@‘) is continuously differentiable when I-3p > 0 and after the substi- 
tution of function (6.5) in the place of P becomes the function I’(,) (v). The partial 

derivatives of these functions have the form 

T~~=92(1--1,)(1fh-221L.2)/3h2?;ao (6.15) 

o<ns=i--3j3<1, Q= vP*i-~l (6.16) 

7$ = (1 - h - 2p / (+Az) / q + T&l / $2 > 0 (G.17) 

7$,1 = YY$I (zz?~~‘-” ‘- ‘/,) > 0 (6.18) 

Bound (6.15) is obvious. Bound (6.17) follows from (6.15) and (6.5). Bound (6.16) 
follows from (6.15). 

We can show that the bound3B - 1 6 r~ is not violated for any v. This fact together 

with bound (6.15) permits us to apply Theorem 4.1 and to show that the control 8) = 
= + i solves problem 7 for system (6.10). sinceobviously. the boundary G (DC3’ = Gl\ 

\ I% P 01 also satisfies condition 4.1.2, while the remaining conditions of the theorem 
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follow from formula (6.15). Formulas (6.17). (6.18) attest to the fulfillment of bounds 
(4,3), (4.4), the condition 4.2.4 is a consequence of the inclusion D(,,) = D(s) E WW 
while condition 4.2.5 is obviously fulfilled. Theorem 4.2 is completely applicable in 
this case and the equalities 

uc4) = u”, $) -_ + 1. I L’D, D 
,(l) S!= - 1 = V@(W), tt, E LN; V(4) = .@) S V. ($ 

=W 

= + 1, 
D@,UD 

uJ E D&) 

(8) = iv*, WC u w, = D(l) 

are valid. 
7. Example. Let Eqs. (1.1) have the form 

Xi = + Xs = - 2s _t il + U, p* = - IN, P > 09 Iv/ < 1 = OW) (7.f) 

The controls 

together with the system 

x, 8; xs, m’ = v@) (wf - z,, p’ = 0 (7.4) 

generate in the region D(l) a first integral of system (7.4). having the form 

c (8) = - )/(6w+f119))‘--1, WED’ (7.5) 
E (8) = - VW+-& zs)+2P-% WED” (7.6) 

6 (zl, DP) = ,‘zt” (7.7) 

As the position passes from the region ZY to the segment B(O < =I < 1, zs = OJ the 
function f (s) increases by a jump. It is continuously differentiable at the remaining 
positions tit E Or’. 

Consider the function 

~lfto) ==mqJll-111 t + E (at 33 + PlH (7.6) 
the region 

iW (w) = fW n [F1 tw) < 01 (7.9) 

and the controls 

i&l1 (20) = --1, w EL)@) n D’ (7.10) 
v(l) (w) =L: + f, w E DC*) n 0” (7.11) 

The inclusions 
'd" (w) E v, (u), I)(') E TV,, (w) (7.12) 

are valid. The proof of inclusions (7.l2) is carried out along a plan analogous to the 
plan for Theorem 2.1. It is sufficient to establish the equality p-r, 3: FL (w) for 
w E: D@) and the fact that when Y = v~Q fw) the first player cannot increase the funct- 
ion F1 fw). 

Let us discuss the first player’s possibilities. It can be verified that when 8 Fif B the 
function pJ (s) = eb (s) satisfies conditions (3. S), (3.6). As a consequence of the dis- 
continuity of the function NJ@, zs)on the segment 3 in the region 

D@) (UT) = %[O < ZI < 1; 5 > 01 n {D@J = D(l) fj Ip + @) (s} > 01 (7.13) 
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the equation 

IL - Z? + p +- zf’a’ (p, z,) = 0 (7.14) 

can have two roots. For 8~’ E D:“(Ic) we denote the smallest root of Eq. (7.14) hy 
.P”‘(wi and we form the control,tl” by the formulas 

lL”‘(UJ) = (p’:‘(U:) -Q)6, for p”‘(/!‘) - ,rt (0 ( 7. 1 .A / 

U’“) ((u, r) I= -(fi”l’ip + jjt.4~l’I(_dI, f r,~(l + jj,Jlj?l)-i 17.lGJ 
for p”p(lu) = ~2, il.65 B 

For.P(“)(4=s. on the segment WEB we define the control u(‘)(w, v) from formula (7. 16). 
substituting for H (8’ 181 the quantities 

H(8) @I (ts + 0) a) for --zl+r>0 (7.17) 

Hta)lzl(zs- 0, 21) for -a+ v<O (7.18) 

If the control U@)(W) is formed in accordance with (7.15) - (7.18). then in analogy with 

the preceding example, the second player’s natural reaction is the control 

@=+I, wEM(w) (7.19) 

The pair’[u@), #)I generates a system of equations 

m’ = p, p’ = - q+ 1 + 2p @ - If@) (p, 21))~1, I’ E D’(d) (7.20) 

zi = p, p = 1 - ~1, s’ED’(0 (7.21) 

8, Without proofs, which would take up too much space, we state a number of prop- 

erties of the motions taking place by virtue of system (7.20). (7.21). 

8.1, Among the solutions of system (7.20) with initial conditions on the segment 

BC [i < I,(O) = Cl0 ( 2; p(0) = O] 

there exists a solution rpL‘ (a < 2, 0, 0 6 : < t1 (a)), and, 
moreover, only one, possessing the property 

limp (a, 0, 1) = lim q(a, 0, t) = 0 for t + tI (a) 

8.2. All solutions s' (1 <q" < a. 0, t > @satisfy for 
some 1, (~1") the relations 
p (210, 0, f*(zC)) = 0. 0 < Zl (z,o, 0, 4@10) 1 < 1 

sp (1 < zp < a. 0, 0 Q t < t, (zP)I ED' (8') 

Fig. 0. 8.3. The solutions E' (ileE B,, L < 0) of system (7.21) 

follow along the semicircles 

(1 - 21)o + ps = (I - z,‘)‘, s’ E D” 

8.4. The solutions 

s’.(l (tc < a; 0, 0 < L < r,(z~~)); ~‘(1 < t1° < a, 0 - 3s < t Q 0) 

fill the region B(a) (I’) bounded by the curves (Fig. 2) 

#,‘(a, 0, 0 < t < t(a) ) - (0, ~61 

8I (a, 0. - z ( :( O)+t, - 1)*+ pa = (i-a)*) -+ lb, f, el 

and the segment 
El’ 10 < tl < a - 1; p = 01 4 (0, e) 
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Nole that the curves 10, C, b1, [b, f, cl do not occur in the region B(a) (r’),while the segm- 
ent (0, e} belongs to it 

8. S. The inclusions 

u(4) (s’) = + i E uts) (s’), Boj (s') E D@) (6') 

are valid, which signifies that for u = u 

“@‘(S’) 

(4) and for @(*) (10), S,)E B(a) (s’) tie control 
= + 1 takes the point out of region Dta'(s') into region D(*’ (v). 

Before we make the assertions to follow, from the point b (6 0) we draw a vertical 

halfline lb, a) and we denote the curve [Ocbd) by G(” (s’) . By B&‘) we denote the 
region located to the right of and above this curve and including it, We assume that the 

inclusions 
s’ = Lp(‘) (3, 4 E B&s’); u=$,, (4 

are equivalent, i.e., we construct a region Dt,) (10) which the transformation ? (~~)takes 

into the region B(,J (s’). 

8.6. The inclusions 

J’) (1D, 4 E u(a) (u, v), Dt,, E W(S) (4 

are valid. Equations (7. SO), (7.21) generate in region 8,,~ (s’) the time 

T [da) (s’, v(‘)), v(‘) = + 11 e TfB,;) (s’) 

while in the region DC,) (I) (w) this time be : tomes the function 

9’& (p - % 21) T’(B.,) (p(*) (p - 22, Zl), z.1) 

8.7. Let AI > 0 be the largest of the numbers A such that the bound T{& > 0 foll- 

ows from the bound TiL!,tj < A. The control 

$3 _ t.(4) P + 1 for UT E B(‘) = B ow(nJ~~11 
solves Problem 7. i.e.. the inclusions 

0;” E 247) (r’), B(')(8) E D(i+') 

are valid. 
8.8. Let As> 0 be the largest of the numbers A such that the bound T(,,@ ( A 

implies the bound 

T?_r:l = +1 
W,?) + (47) 2-w p(N11 >o 

then. the equalities 

UW = IQ 9 ~(4 = zic4), Dccrj = Dt7) n [T$ i min (Al, A,)] E w(d) 

are valid. We introduce tine notation 
A, = min [Al, As, & (2)) 

+) (4 = D:,) n t*:,, G 41 
Dflol (4 = D(l)\ (D,,, u D(*) 

@(I~) (3 = +1 for u E D~IOJ (4 
8. 9. The relations 
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%o = u(4) a I., 
vw 

= VW P + i - DO, 
% (“1 E wtl (9 

are valid. The most difficult part of the proof of assertion 8.9 is the proof of the foil- 
owing property of the pair lr+uW, v=mv~o)]: 

where gr is the point where the trajectory goes onto the common boundary@, of regi- 

ons D(,) and &@s while #a is the point where the trajectory returns to this boundary. 
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Necessary conditions are presented for the optimality of a certain guaranteed 

time (upper layer time Cl]) for a large class of pursuit problems. Sufficient 

conditions of a general form have been cited in Cl-51 and in a number of other 
papers for the possibility of terminating the pursuit at a specified time and the 
guarantee time effectively computed. Sufficient optimality conditions for gua- 
rantee times have been discussed in [S-8]. 

1. Suppose that a linear pursuit problem in an n-dimensional Euclidean space 8 is 
described: 

a) by linear vector differential equations 

i = cz -u+v W 

where c is a constant n th - order square matrix, u = ts (t) E P and v = v (t) E v 
are vector-valued functions, measurable for t > 0 , called the controls of the players 

(the pursuer and pursued respectively); P c R and Q c R are convex compacta; 
b) by a terminal set ~~representabie in the form M = M, + W,, where &a is a 

linear subspace of space a. and W, is some compact convex set in a subspace L 


