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We consider a differential game [1-5] with termination on a set Miz, = 0;| 22 1<
< pl, in which the payoff is the time of hitting onto Af. The velocity z, of the
change in the coordinate z; obeys the equation

' =@s(r, ..., e v)+u
The first (minimizing) player's control u is subject to the impulse constraint

T
pr— | et =p @ >0

g
and does not enter into the equations describing the variations of the variables
T3 «.os Tpq- The second (maximizing) player’s control v is an ( n— 2 )=vector
and the second player chooses it from a certain set ¢. A number of theorems
have been formulated, permitting us to find the controls and the time of the
minimax problem or to form the second player's control enabling him to evade

falling onto set M under any action by the first player, We consider three exam-

ples,
1. Let the equations of motion have the form
' =z, = @ (W), Ty = @y (w, v) +u
xi'z o; (w, 2;) (i=3...n=1) (11)
pw=—lul, wx>=0 0w
w = [1'17 seey Ty-1d H]‘ v = {v21 reey vrl—l]

The first player's control U is subject to the constraint

po — | [u|de==p (1) >0 (1.2)

0

while the second player's control » belongs to a certain closed bounded convex set
Q (w) defined for all values of w.Constraint (1,2) admits of impulse jumps in the vari-
ables x,, in accord with the formulas

1‘?) (17) == Ty (T) = Ty (t — 0) <+ uy, !“'(1) (T) =W (T) =H (t— 0) -“11[
(1.3)

The vector
w (T) = [1'1 (T)v Zg (T - O)v veey Tpeg (T)v } (t - U)J

is called the position of the game at the instant{ = Tt.If in position w (t) the first pla-
yer realizes jumps (1, 3), then the vector
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wh (1) = [z, (1), 200 = 2, (1), wovy 2pey (1) p® (1) = p (1)}

is not a position,

Suppose that fort > Tthe players realize the finite controls u (W, v)s v (W), then
the subsequent motion by virtue of system (1,1) takes place just as it would take place
if the vector w(® (t) were the position at time { = t. In what follows the words "motion
issues from the position wW(t)" should be understood in precisely this sense, The pair
of conwols u (w, v), v (W) and the trajectory w (¢ >0, {u (&, v), t (W)}, w( =
= ())realized by them are said to be admissible if the equality

w©, {u@w v, v}, w=0)=uwD0 =uwV({E=20

is fulfilled for ¢ = ( and, furthermore, for all ¢ >> () the trajectory is right-continu-
ous in { has a finite number of jumps compatible with (1, 3), satisfies (1,2), and satis-
fies system (1.1) for almost all ¢ > 0.

The problems formulated below are solved by admissible controls and trajectories,

In order that the initial value W (0) be formally a position, we ascribe to it a previous
history w (1 << U) (¢ << <C U) which is continuous at 7 = 0, The first player can
instantly bnng about the transition from the set M [z, = 0; | Izl << wlto the set

K lz; = 2, = U] by a "soft” contact with respect to the coordinate r; and the velo-
city z, . As a consequence of this we can consider }f as the set of game termination,

We formulate the fundamental problems:

Problem 1, Find controlsu® (w, ), v° (w)such that the time 7 {1, »] at which
trajectory w (£, {u, v}, w (0))first hits on M would satisfy the bounds

Tw,o)<T[W,v’1<T [u,0°)

The collection of positions admitting of a solution of Problem 1 is denoted W, (w).
Problem 2, (Evasion), Find v, () such that the trajectory w (/. {u, vy (W)},
w (0)) does not hit onto M for any u and ¢ > 0, The existence conditions for v, (i)

delineate a set W, (w).

Problem 3, (Capture), Findus (w, v)leading the trajectory w (f, {us), v},
w (0)) onto set M in finite time for any ¢ (1), The existence conditions for u 3 (w. ?)
generate a set Wg, (w).

Problem 4, (Local variant of Problem 1), Find u() (W, ), vy (w) and a set
W) () such that the bound

T lugy. 01 < T lugy vl (1.%)

is fulfilled for anyw (0) & W,y (w) and any p and such that the bound
T lugy, vl < T lu, vyl (1.5
is fulfilled for any pair 1, v, retaining the trajectory in the region W,(w).
2, We restrict ourselves to examining only those systems for which the inclusion
Milzy =0; |z, | > ul = W, (w) 2.4
is valid and the whole examination is carried out in the region

DO w) =D [z, = 0, 2, <<0] |y CO lz, > 0] (2.2;
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in which any position can be located by a change in axes direction,

Theorem 2.1, Forw& DW(w)let there exist a control ?(w)and a function
FQ (w) possessing the following properties:

2.1,1, The function FO)(w) = z, when w = D),

2,1.2, The sum p + F® (w) does not grow along any trajectory w (¢, {u, vV (w)},
w V), w (V) & DW., The inclusions

v® (W) E vy (), DO W)= DY [ [+ FVw) < 0] Wy (w) (2.3)

are valid under conditions 2,1,1,, 2.1.2,, i,e., the control ¥V (w)solves Problem 2
in the region D@ (),

Proof, Letw (0) & D®. The wajectory w(t, {u, v‘*)(w)},(0)) cannot hit onto 3/ ear-
Lier than the instant #; at which the inclusion w(z,, {u, v(w)}, w (0)) & D\ is first
realized, because %; can decrease only when z, < 0.However, from 2,1,1, and 2,1,2
there follows the inclusion w(¢, {u, v'* (w)}, w(U) ) & M,.A subsequent hitting onto M is
impossible in accordance with condition (2, 1).

Under certain conditions the solution of the following problem can serve as the basis
for the construction of the functions g (w) and F® () ,

Problem 5, Find ¥(3 (w) minimizing the value of the functional

Vw(t {0 v} w(0) =z, () lwhen 2, (&) = 0]

equal to the value of z, when the equality 2, = 0 is first realized on the trajectories

of system (1,1) obtained for u (w, v) = 0.
The collection of values of & for which Problem 5 has a solution forms a set D we
= DW (w).Suppose that we have succeeded in continuing the functions H ;) =

=V {{v(5} )V into region D“' and in obtaining a continuously-differentiable function
F%(w) and a certain function 2{"(w) satisfying the realtions:

FEw) = i FEMg (w, v @) 4 FEMu — FE™Mu| - (24)
im=1
FRE =080z, (i=1...n—1), FHM =0FE0on (2.5)
Pgl) (w (1) "il F(U[l] il) (w)) <0 (2.6)
i=1
PR < FET 41 (2.7)

Let us explain the relations written out, The left-hand side of (2, 4) is the first deriva-
tive of the function £ }/(w) by virtue of system (1.1). The function P, combines the
terms not depending on control u,while PJY combines the terms which do depend on

control . In the formulas we have adopted the notation PV = F@&P — U 1y |,
It is not difficult to verify the relation
(+ FE )= —lu] 14+ FE™) + FEMe + PP <0 (2.8)

which is a consequence of bounds (2, 6), (2,7). The function Fgf(w) satisfies condition

2,1.1, by construction, while the fulfillment of condition 2,1. 2 follows from (2. 8).
Thus we can assert the following: if the functions FB(w)and v} (w) satisfy conditions
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(2.6) and (2.7), then, by setting F) = F oM = p{g, we obtain functions consistent
with the hypotheses of Theorem 2,1,

3, Let us assume that in all the subsequent considerations the functions @; (0, v)
(i=1,..,n~—1) and the set @ (w) do not depend upon p. In this case the functions
Heun=V [{?»}) v and the region D (5 will depend only on the vector

§ = (29, 2y, Tgy .o, Tyl = {20, 2], 2 = [z, 24y +evs Tacy) (3.1)

Suppose that we have succeeded in continuing the functions H ) and %) into region
D® (s) = D; (s}, in the form of functions H®and »®) ,

v@ (s) = vy (5), sE D (s) (3.2)
H®(5)=Hg(s), s&D(s) (3.3)
Let us assume also that from the inclusions
seD¥ (s), v=Q (se=D¥ (s) (3.4)
there follow the relations
PP (s, v (5)) = 0 PP (5, v (s)) (3.5)
while from the inclusion s €= D®) [} C® there follows the bound
| HOP (5)] <4 (3.6)

Here the expression P}” (s, p) equals the derivative of the function H®)(s) by virtue of
system (1,1) with u (w, ») = 0.

We introduce into consideration a region D“)(w) defined in the following manner:
for any w = D® (w)there exists an admissible control u= p, (W) § < 0 such that
the vector

w® = [z, +py, 2, 1 — [ | ] = [217, 2, u®] (3.1
satisfies the inclusion
w®=D® () Niu+ H® > 0] (3.8)
In region D (w)we introduce the impulse control
u® ) = ui? () § (3.9)
where 1. () is the smallest root of the equation :
W= 4+ H® 1y 4y, 2) =0 (3.10)

According to conditions (3, 6) and (3, 8) the smallest root of Eq, (3, 8) is unique and non-
positive, The relations

w4 H® (5) =0, s=D¥ () (5.1

follow from the condition it1”{u) = 0.Under conditions (3.11) the control z(’(10, v)
is chosen as the smallest root of the equation

(!l + I]‘m(.\'))‘ —_—— Iu : _:_H(?-)[‘Z}u + p(lw (S. !«‘) — 0 (: .

et

—

(R
R

This root has the form

U (i, v) = u® (5, v) = — PP (s, v) (1 + HO™ (3.13)
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We present heuristic arguments which suggest how to form the control « in accorda-
nce with (3, 9) and (3,13), Intuition suggests that the first player should realize with a
jump a negative value, maximal in modulus, of the velocity 2 = z, 4 p,with the
aim of getting into region D' rapidly, However, it is risky for the first player to viol-
ate the inequality p® 4 A (2,1, 2) >0 by virtue of arguments analogous to those used
in the proof of Theorem 2,1, On the other hand, by applying control u*¥ the first player
is guaranteed from hitting onto set M, at least as long as the motion remains in region
D5} Indeed, after the impulse vtV {w= u§"‘}é the subsequent motion originates from the
position

w® = {2 = p9 = 21+ p{® (), 2, pP = | {0 ] (314
and takes place in accordance with the equations
n' = p =2, P = Qu{p, 5 v) + 14 P>z, v} (3.15)
x; = @; {p. 3, ¥} =3, ...,n — 1)

We note that as long as the components of the vector s’ == [p, z] remain in the region
D5y = Dz, = p, z), the equality u - H¥(s’) = 0 is preserved along the traject-
ories of system (3,15), This signifies that from the inclusions

SO ) BP0 = p(0), () & DD ()
s'itfr (93, p0), z (0)) € My (2, = O]

(the argument u'“/(s’, v(s'))is omitted within the braces because «'¥ is a known function
of s°, v (s"}) there follows the inclusion
w(ty, (¥ (w. v (), v )}, wO)E M

Thus, any control v (s') which retains a wajectory of system (3, 15) in region D¥}(s') and
brings it at the instant ¢, onto the “plane” z, = 0, leads the pesition w onto the set M
at this instant %, ;

After making the substitution p = z, - {and taking the condition pf‘) << Ointo
account, Eq, {3,10) can be written in the equivalent form

p—z+p+HO(p, =0 {3.16)

Its solution
pw = p® (b — o z) (3.17)

jointly with the identity transformation 2z’ == % maps the region D(® () onto the region
D)s') and furnishes the initial conditions in system (3,15), In what follows we denote
this mapping by 7 (w).

4, Suppose that the first player realizes the conwol y(+; then the second player is
faced with two problems:

Problem 6, Find v®(s")such that the trajectoty of system (3,15) either remains
in the region D®(s'), but never leaves the planez; = 0, or leaves the region D®(s').
The existence conditions for 148 () delineate a region D®}(s') = D©Xs').

Problem 7, Find vV (§') bringing the trajectory of system {3, 15) onto the plane
z; = 0 in maximal time, The existence conditions for ¥{7)(s") delineate a region
Das'y ez DO(s').

Naturally, the second player will solve Problem 7 only in case it is impossible for
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him to solve Problem 6, Hence follows the inclusion DWNs') &= DOXs') \ DW(s").
In the example presented in Sect, 6 the solution of Problem & helps to solve the problem
of the complete construction of the set W, and of the control ry(w).

Theorem 4,1, Suppose that the exact equality

DO(s') = D(s') \_D®(s')

holds and that the region D()(s} is closed by the boundary G ( (s’) = M, Also suppose
that everywhere in region D®(s’) there exist a function p{;, (s') and a continuous func-
tion T'(5) (8) satisfying the following requirements:

4,1,1. The function T'(5(s’) is continuously differentiable in the region D(M(s")
\ G (s') and satisfies the relation

I ® ’ r L4 ° 4 i n? !
Ty (8" u, 2o (5) = TP + T (9 (8, 00 () + @2 (5, V0 8°))) +
HES 4
+ 2 TG (5" v () = — 1 > Ty (¢, 9, v (s)) (4.1)
im3
4.1.2, Conditions analogous to conditions (4,1) are fulfilled on the part of the bound-
ary G\ M,,which is a smooth surface, under a partial differentiation along the ind-
icated part of the boundary,
4 1. i; The function Ty (s') > O when s’ EDM\ M, and T, (') == O when
zt
4 1.4 No control 17 (s') whatsoever can carry the trajectory outside of D¢ (s') if
s’ (0) &= D (s).
Under conditions 4,1,1 ~ 4,1,4 the region D(") (s’)is the total region of existence of
the solution of Problem 7 and the equalities

Ve (87) = v (57), T (s')=T v (s))] (4.2)

are valid,

The proof of Theorem 4,1 is not complicated and can be omitted, By [ g (W) and
Dy, (w) we denote the preimages of regions D®)(s")and [ (s')s corresponding to the
mapping 1) (w).In region D® (w) the function 7, (s') goes over into the function
Iy (p¥ (p — xy, 2) 2). We proceed to formulate the conditions under which the pair
of controls u'¥, ,7isolves Problem 1, 3, 4,

Theorem 4,2, Letthe following conditions be fulfilled:

4.2,1, Inregion D, (i) there exists a certain admissible control vy (), becoming

et (s") for z, = P (p — o, 2)and maximizing the quantity F;,: which is defined
below,

4,2,2, The bound

Lloy (%2 = 10, 2,00 () € Poy (8,3 19, 2,000 () (4.3)
is valid for the sum Py, (w, t) which is the derivative of function T« by virtue of
system (1, 1) with « (w, v) =

4,2.3, The bound
T = —1{ >0 (44)

is valid,
4.2.4, In the region Dy, (w) = DM\ (U, | DW)there exists a control vy, (w)
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such that under any control u =& y(4),taking the position outside region D, at the point
Wy &€ Gy \ M of the boundary Gy, the trajectory w (¢ > Tg)(w,), {8, Vg (w)}, wy)
either does not return to the region D) at all or returns to the point w, = Goy \ M~
with the bound T'y) (wy) > T () being observed,

4.2, 5. In region DWW there exist functions F®), v satisfying the hypotheses of
Theorem 2,1, and moreover, H® = F( when s = D® (s'),

The inclusions
uWeu®, v =yl Dgyes=sW* (442)
are valid under conditions 4,2,1~ 4,2, 5, i,e., 4, v solve Problem 1, Furthermore,
the equality o o
T(g)(p,—x,, Z)=T[ll, °) (46)
is valid, The equalities
O =uu, D =vy, Dg=Wg,
(4.7)

Toy(p—124,z)=T (&) Vi)

are valid under conditions 4,2.1, 4.2.2, 4.2.3, 4.2.5, i.e., 2, v solve Problem
4 in the region D(o)- Furthermore, it is obvious that the control u,#) = y; solves Prob-
lem 3 in the region D, &= W, independently of conditions 4,2,1 - 4.2. 5.

Proof, The derivative of the function T, by virtue of system (1.1) has the form

(T B — 2 20 =Py + T +1u)) (4e8)

Bound (4, 3) shows that for v = v(?)(s") this derivative achieves a minimum for u = y',
over all controls u preserving the inclusionw'! < D (1).The realization « < u'* takes
the position into region 2®) according to condition 4,2, 5, The realization : 5= u(),
taking the position outside D™ has no advantage, according to condition 4,2,4, When
u = u' the second player should select v = {7 (s') in accordance with the solution of
Problem 7, The proof of the correspondence with Problem 1 is complete, If we discard
condition 4, 2.4, then the proof of the correspondence with the solution of Problem 4
for all u which paired with control v, (w) retains the trajectory in region D, is a ver-
batim repetition of the arguments presented above,

Theorem 4,3, If the set ) (s) and the functions ¢; (s, v) (i = 2, ... n — 1)
are such that in the region

L(w,c) =Dyl + ... + cia<a’]

we can find a continuous and bounded function N {i¢, ¢;) — 0 as g — Q uniformly
inw & Dy(w)and satisfying the bound

[A(z) (maxv(czﬁPz + ... + C:L-l‘pu-—1) l < \ (/‘/‘7 ,"L) l A'z‘li ’ (,"9)

(where Al2i 4 (s, c;)denotes a partial increment of the function ¢ with respect to the
variable Z3), then there exists a positive function ¢ (2,<_ 0) >> 0 and a region Dlz, <
< U, 0 < z; << & (24)] in which bounds (4, 3) and (4, 4) are valid,

Proof, We write out in detail the quantity 7,
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P =T =, + TH0u (s, vy (o)) + 71V, (s, v (0) (4a101)

in accord with the formulas
4 — 2
T{;)l =T + TR, it TiElpwIs] (411

il =70+ TiRlpWI (=3,...n—1)

which are a consequence of bound (3, 6) guaranteeing the differentiability of the funct-
ion p'® () and the bound p (2] 5 0, as well as with the relations

=0 (=2..,2=1 r&la=0,<0 (4.42)
Tl (02:>0) >0, e =0; p<0] (4.13)
T >0, fel0<n<e(m); p<0) (444

We obtain the following conclusions, The bound (4,14) in combination with the
bound p@12] > 0 guarantees the fulfillment of bound (4,4), Since the function p¥'(r —
— .z} depends only on k= 2,. after carrying out partial differentiations of this function
the quantity p—22can be replaced by p'(u —z,, z)from Eq, (3.16), and as a consequence
the quantities T{g can be taken as dependent on 29, ;. Thus, a change in z,, preserving
the quantities ;, — z,and p'¥, affects only the functions @, .... ¢,,.The relation

P(g)l (p(“ XL By Vi N max, P(”)l (z2 2 p(‘l)‘ z, v (w) (4.13)

is valid according to bound (4. 9) and to the smallness of the derivatives T {E], .
oses Tg;‘)' 1] because in formula (4,10) the fundamental role is played by the first term,
Bound (4. 15) implies bound (4, 3) as a corollary,

Before proceeding to a consideration of examples, we make several remarks,

1. The inclusion M, & W, (w)and the bound (3, 6) are fundamental constraints for
the constructions proposed, The inclusion D® =y D p is not essential because it is
not used in the proof,

2. As we shall see from the example in Sect, 7, the region D (s") = D®(s") \
N\ D®(s"y is not always successfully constructed completely, However, the arguments
in Theorem 4,1 nowhere make use of the above-mentioned exact equality and are app-
licable in any part of region D) (w).

3. In the examples presented below it is impossible to hit onto M from the set M,
when 1, (w) =0.For the first example this follows from an analysis of the problem,
while for the second and third examples, this was proven in {4],

§. Example, With a suitable choice of scales a controlled heavy pendulum with
an ideal suspension obeys the equations
ry = Zo. 2z, = — singy + uf v (5.1)
W= —ju. r€Q@)=0

In the absence of control » Problem 1 becomes a time optimality problem, When & =
= 0 system (5,1} admits of a first integral

Hy=—Vi—cosn+e’ (5.2)
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corresponding to Problem 5 in the region /) %)
Cl2x-vI) located above the separatrix (i.#.¢) —

(1 — cos z; + z,* = 2} in the strip determined
by the bounds (Fig,
y ounds (Fig,1)
z (VR A HIF MY N I (D AP gith X
z, >0} (5.3)

Let us continue A5y by formula (5, 2) onto

the curve(d, B, Cjand adopt the following me-
Fig. 1. thod of mapping the motion, We locate the

initial position in the region D)’ = D, Ull4, B, C)]. We reflect the point
g, (2, z) €[4, B, C)with u (g;) < 0 into the point g, (21 — z;,— z,) symmetrically
with respect to point # , and we assume %(¢y) = — u(gy). The trajectory is discontinuous
under such a transformation, but the function H, varies continuously, The region W’
from which it is impossible to hit onto M is defined by the relation

W' () = (D NIk + H g <ONUNA B, O b+ Hgy () =0] .4
g (4, B, C)

Indeed, conditions 2,1.1 and 2,1,2 are fulfilled in the region D® = D, N [p +
+ H ) < 0] for the function F) = H ,, and Theorem 2,1 is applicable, In the region

[(4, B, C); p+ Hp 8 € (4, B, €) ) =0

the motion does not arrive into region D when u = (0 while when u = 0 the motion
passes into region D' {w).Thus, the motion cannot be led onto M from the region
W,'(w) defined by relation (5.4), The method adopted for representing the motion
allows us to identify regions £(® and D, and functions H(* and ¥ because, obvio-
usly, conditions (3, 5) and (3,6) are fulfilled, The time TW(z,, z,) of the point's pass-
ing into region [ when u = 0 has been determined in the region D@ =D ..

Under the adopted representation of the motion the function p“)(u — &y, 2} is defined
two-valuedly in the region O = DO [u + HY > 0]

/’(14) = a(l —cosz) ] (b — w2} — Lo (b —%2) 5.5
P~(:4> =1l —cosm)/ (W 2y = Yo (1 + ) (5.6)

Here
W= — | Z =z 4 Uy (15U (5.7)
P~>}‘-'.’z:ty1.+60811—1:z>0 (58)

In the last formula the plus sign is taken when z, > n and the minus, when 4, < . The
function ¥ (w) is defined in the region delineated by the bound (5. 8) and the condit-
ion ' > ¥ 2. The introduction of the function P has the following geometric meaning,
If for w & DWthere exists an impulseu = y, § > Otaking the point away from the curve
(4,B.C). then it can be représented as a sum of two impulses: the impulse p,d > 0 lead-
ing onto the curve (4,B,Clinto the pointg; (z;, 7.),and the impulse uad < O transferring
the point g, (211 — z,, —2y) inito the point (2" = 20 — z,; 2" = PsY (w) ).
The control
uid) _ (P&‘) —z) 8= p§4)6 (5.9)
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= (g — £1) 8 + ps (g2 6 (5.10)
is chosen in accordance with formula (5, 9) when the bound

T (21, p) < T (21— 1), p§Y) (5.11)

is realized and with formula (5, 10) when the opposite bound is realized, This means
that for each position u: & D™, compatible with bounds (5, 8) and condition p’ > V2,
there exist two functions

T ey PP 2o, 1), T (= m o 2 pY (B — e )

into which the function I’ m(:cl.xa) transfers after pg‘)z is substituted for z,, The bounds
Ts)ﬁiﬂ = 7] pg«gl'z} >0, T4 T3Pl pgé{ﬂ >4 (5.12;

are valid for both functions {6}, If the control ui“) is chosen in accordance with (5, 9),
then bounds (5, 12) guarantee the fulfillment of conditions (4, 3) and (4, 4), and the con-
trol «{” turns out to be optimal in comparison with all controls not leading onto the
boundary (4, B, ¢). On the other hand, the estimate (7(®)* > — 1, is fulfilled when u =

= u‘f’ and therefore bound (5,11) is preserved along the trajectory until bound (5, 8) or
the bound p’ >> ¥ 2 is violated and the function T{¥ ceases to exist, The proof >f the
optimality of u{” when it is chosen in accordance with (5,10) is analogous, Thus, the
choice of (5, 9) or (5.10) with respect to bound (5, 11) or to the bound contrary to it rea-
lizes, in system (5,1), a time-optimal hitting onto set M in the region D'¥(x).

8. Example, Suppose that system (1,1) has the form

= I=u<v, P=-—lu}, p20, j?|I=Qw) (6.1

The controls , '
oM ()= —1, sl 120 r: <0 (6.2)
v () =0, e D" [21>0; 2> V) (6.3)

and the function w '
Fo=—Vazt+2n (6.4)

satisfy (2.2) and (2,3), This means that Theorem 2,1 is fulfilled in the region
D(‘.'.‘) =D(1) n “L+ I,'(l) < Ol

and the control »W(s) effects an escape,
The region D®(s') = D! the control +¥(s) = (' and the function #® = F satisfy
conditions (3, 5) and (3, 6).'From the inequality i + #¢/ > (and the equation

b=t p— VEFI=0 ©5)
follows the relation
PO =) (p =2 = Yo (b — 22) <O ©9

proving that the region DV [ + FU > 0] coincides with the region D@ (), since
@9, 2,) €D® ("
The control
u® = (p@O 28 for PO —2z <O (6.7
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(e, y=p(v+ 1)/ (VP + 20— p) for pV=p=m (6.8)
leads to a system (3,15) of the form
n*=p, p=ud @ 0+ v (6.9)

Setting v(w) =41 whenw&€D™®, in the region D® we obtain the control v*® =+ {,
while system (8, 9) goes over into the system

Br=20n/P—1=28—1, $r=—1 (6.10)
Ya=VpP+omtr (6.41)

admitting in D®(s’) of first integrals of the form
B, 4t = ¢, P(1 — 3 =, (6.12)

After substitution from Eq, (6, 5) the function R® = ,(3 — 1) becomes the function
RW (w), and the condition R'\¥(w) > 0 delineates the region D) =D¥W N [RY >
> 0]. Let us compute

RO = 3 — 1y VP £ 20 >0 weD, (6.13)

The equation (R®)* = RO p 4 RGNPlg — ( permits us to obtain, from bound (6,13)
and the bound 23 2 P the bound
(ROY = (ROUI 4 RO 0l 1 ROPIOBI [y |2y +1]30, w&Dy (44

which is valid for any u preserving the trajectory in region D@, It ensues from bound
(6,13), from the equality R®(P1g = _ p@WR®N'] > ¢ for p'¥ 0, and from the bound
p@2 > 0. From (6,14) it follows that whenw (0) € D4, either the inclusion w (¢, {u, v¥ =
= <41}, w(l)) € D@ P M, is preserved or the trajectory falls into region D@ (w). This
proves the inclusion

W = el = Yoo € Vo) D(s) (v) € Wy (v)

Forw € Dy, (v), s’ € DY)(s') = D™ N [R® > 0], Egs, (6.12) generate the time
Tay () ,
T () = Pult — (4 — 3B)"9)
The function T is continuously differentiable when 1—3p > 0 and after the substi-
tution of function (6, 5) in the place of » becomes the function T(g) (w). The partial
derivatives of these functions have the form

T{g)l =P (1 —A) (4 + A — 2% /3029 >0 (6.15)
0KM=1-3<1, 9= VPF+u (6.16)
T = (=2 —2p/ (9N [ g+ TE /92 20 (6.17)
1 = T a2 4- 1) 20 (6.18)

Bound (6, 15) is obvious, Bound (6,17) follows from (6,15) and (6, 5), Bound (6.18)
follows from (6,15),

We can show that the bound 3 — 1 < 0 is not violated for any v. This fact together
with bound (6,15) permits us to apply Theorem 4,1 and to show that the control o) =
= + 1 solves Problem 7 for system (6,10), since.obviously. the boundary G [R® = 0I\
N\ [z, = 0] also satisfies condition 4,1.2, while the remaining conditions of the theorem
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follow from formula (6, 15), Formulas (6, 17), (6. 18) attest to the fulfillment of bounds
(4.3), (4.4), the condition 4, 2,4 is a consequence of the inclusion D g = D) € W,
while condition 4,2, 5 is obviously fulfilled, Theorem 4,2 is completely applicable in
this case and the equalities
u =, M=y f=, Dy =W
W = — 1 = vy(w), v € DY; 0 =D =y () = +1, wEDy
DWYD, = W,, W' W, =DW

are valid.
7. Example, LetEgs, (1.1) have the form
w=xn n=—xn+tuty, pP=—lju, p>30 P1i=0Ww (7.1)
The controls
O ()= —1, wED (2,205 <0} (7.2)
W) =+1, vED B>l 5> (1.3)
together with the system
2= 20, @ = 0 (w) — Z, p=0 {7.4)
generate in the region D a first integral of system (7.4), having the form
E@=—V{(m+1,m)p—1, weD (1.5)
== V@~ m)+2Fr—1, weD” (7.6)
Lizy, 22)= V& + 28 (1.7

As the position passes from the region )" to the segment B[0 < z, < 1, z, = 0] the
function § (s) increases by a jump, It is continuously differentiable at the remaining
positions w € C\V/, :

Consider the function

F£1(w) =max, (b~={m1|-+8 (1, 22+ m)) (1.9
the region
D () = DY) ) [F1 () < 0] (1.9
and the controls
Ww =—1, wed®np (7.10)
vW(w) = +1, wgDd® D" (7.141)
The inclusions
v () € vy (), DD & W, () (7.12)

are valid, The proof of inclusions (7, 12) is carried out along a plan analogous to the
plan for Theorem 2,1, It is sufficient to establish the equality R — 2, = F; (w) for
w &€ D@ and the fact that when v = vV () the first player cannot increase the funct-
ion F; (w).

Let us discuss the first player's possibilities, It can be verified that when s & B the
function H' (s) = § (s) satisfies conditions (3, 5), (3.6). As a consequence of the dis-
continuity of the function #% (p, z,) on the segment 5 in the region

DO W) =Bl0<s <t >0 NP =DV [u+HED >0 (743
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the equation
W= zop+ HD (p, z) =0 (7.14)

can have two roots, For « & D% (w) we denote the smallest root of Eq, (7. 14) hy
P (w) and we form the control' ' by the formulas
ut(w) = (pt(w) —22)8, for ptiw)—r. <O (Lo
I w, ) = —(H iy 4 HOR (= 4 0)) (1 4 HOE) - (7.16)
for pé(w) = ze, weEB
For p(w)=a;, on the segment weE g we define the control u®)(w, v) from formula (7. 16),
substituting for #® 12! the quantities
H®E 210, 21) for —m4+02320 (7.17)
HO @ (@2 —0,71) for —a+2<L0 (7.18)

If the control () is formed in accordance with (7.15) - (7,18), then in analogy with
the preceding example, the second player's natural reaction is the control

o = +1, ve DWW (w) (7.49)

The pair[u'®, ] generates a system of equations
a=pp=—a+1+20@—HY (@ o) L €D) (7.20)
ow=p, p=1—2z, SED " (7.21)

8, Without proofs, which would take up too much space, we state a number of prop-
erties of the motions taking place by virtue of system (7, 20), (7.21).

8.1. Among the solutions of system (7.20) with initial conditions on the segment
4 B: 1 < 2y(0) = =° < 2; p(0) = 0]
there exists a solution ¢,/ (@ < 2, 0, 0 < ¢ < ¢, (@), and,
#&,J) moreover, only one, possessing the property
¢ ——z limp(a, 0,8 = limz (, 0,8 =0 for t —¢ ()

8.2. All solutions s’ (1 < z,° < @, 0, ¢ > 0)satisfy for
f some /; (z;") the relations
Pz’ 0, 4 () =0 0Lz (%0, 4 () ) < 1
(77 ad <L 0, 0<ES @) ED ()

Fig. 2. 8,3, The solutions s’ (s"° & By, t < 0) of system (7,21)

follow along the semicircles
-z +p= A=z dE D"

8.4. The solutions

YUK <a 0, 0K IS (n?); d1SKn°<a 0—-aKt<0)

fill the region B (') bounded by the curves (Fig. 2)
8./ (2, 0,0 ¢t <t (a)) — [0, cb]
(@0 — A< 0) =((z; — 1)+ pP = (1—a)®) =[5, f, el

and the segment
B0z <a—1; p=0l-=(0 ¢
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Note that the curves [0, ¢, b}, Ib, f. €] do not occur in the region B 4 (s"), while the segm-
ent (0, ¢) belongs to it,
8.5, The inclusions

W (") = + 1 €9 (s), By, () EDO ()

are valid, which signifies that for u = 4 and for ®? (w), 7)€ By, (s") the control
v®(s') = + 1 takes the point out of region D®)(s’) into region D® (u).

Before we make the assertions to follow, from the point b (&, 0) we draw a vertical
halfline [b,d) and we denote the curve [Ocbd)by G'” (s) . By B¢y)(s’) we denote the
region located to the right of and above this curve and including it, We assume that the

inclusions 1
s = [p® (), z,) € Bays'),  wE&Diy w)

are equivalent, i, e., we construct a region D:(l'l) (w) which the transformation 1 (w) takes
into the region B, (s).
8.6, The inclusions
(4) 1
(v, v) € ugy (w, v),  Diy € Wy ()

are valid, Equations (7,20). (7.21) generate in region By, (s') the time
T [u@(s',v9), 00 = 4+ 1] = T - (s")

while in the region Dg; {w) this time becomes the function

7%7) B— 72 20)T 5 (PO (B — 220 3), 31)
8.7. LetA; >0 be the largest of the numbers A such that the bound TEE!.,) = 0 foll-
ows from the bound 7. ., < 4. The control
A7) — .
Hi=i@ett for w € BV = Boy\[T 5, < Al

solves Problem 7, i,e,. the inclusions
e v @), BYEed? )

are valid,
8,8. Let 43> 0 be the largest of the numbers A such that the bound T'p o € 4
implies the bound

T8 = 1} o + T, poln 30
then, the equalities
u® = uy, 9 =2, D= Dy, N [T < min (4, 4)l € Wy
are valid, We introduce the notation
Ay =min [4;, A 4 (2))
Dyyy (w) = Dioy N [Tr) < 44)
Dy (w) = DY\ (D) |J D¥)

Yoo (@) = +1 for ¥ € Dy (W)
8.9, The relations
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Ugg) = U@ = u®, vy =vW=+1m=2’ D (v)E W, (v)
are valid, The most difficult part of the proof of assertion 8, 9 is the proof of the foll-
owing property of the pair [ustku(d), v=av(p)):

Tty (8) STy (89

where g is the point where the trajectory goes onto the common boundary G, of regi-
ons D) and D)y while fy is the point where the trajectory returns to this boundary,
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Necessary conditions are presented for the optimality of a certain guaranteed
time (upper layer time [1]) for a large class of pursuit problems, Sufficient
conditions of a general form have been cited in {1-5] and in a number of other
papers for the possibility of terminating the pursuit at a specified time and the
guaraniee time effectively computed, Sufficient optimality conditions for gua-
rantee times have been discussed in [6-8],

1, Suppose that a linear pursuit problem in an p-dimensional Euclidean space R is
described:

a) by linear vector differential equations

2=Cz—u-+4v (¢ 3]

where (' is a constant 7 th - order square matrix, 2 = u () = Pand v = v (}) & (/
are vector-valued functions, measurable for Z 2> 0, called the controls of the players
(the pursuer and pursued respectively); P — R andQ — R are convex compacta;

b) by a terminal set /M representable in the form M = M, + W,, where M, isa
linear subspace of space K. and W, is some compact convex set in a subspace L



